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Abstract
A lot of mathemical models focused on measles dynamics have been pro-

posed in the literature. Yet, the modelling effort in this area is essentially
concentrated on the mechanismes of measles propagation. If present, vac-
cination diffusion is treated as an exogenous factor despite the clear inter-
actions between these two phenomenons. Here, we propose a model repre-
senting the joint evolution of measles incidence and vaccination coverage in
France since the diffusion of the vaccine. Estimation of the parameters of
this model has been achieved through an original method based on an E-M
algorithm. This model gives indications on the way measles propagation and
vaccination diffusion interact. It also allow to discuss the ability to eliminate
this disease in the next future in France.

1. Introduction

Since the first mathemical models focused on infectious disease dynamics, measles
has always been one of the disease whom dynamics has been the most studied
[1]. The availability of an effective vaccine and the implementation of vaccination
programs all over the world has besides renewed the interest of this kind of models
during the last decades. Their use is in fact essential to treat the questions related
to the ability to eliminate or even eradicate measles through vaccination. Yet, if
a large diversity of models can be found in the literature, the modelling effort is
essentially concentrated on the way the virus spread out in the population (age
heterogeneity[2], spatial heteregoneity[3], duration of the infectious period[4]...).
On the contrary, if present, the evolution of vaccination coverage is treated as an
exogenous factor which affect measles dynamics but which is not affected by it.

This kind of interactions has nevertheless been studied on a theoretical view-
point through the use of economic models focused on individual behaviours re-
garding vaccination[5]. These analysis show that a key point in the difficulties
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raised by the eradication of a vaccine-preventable disease is the fact that the de-
crease of the risk to contract the disease induced by an increase of the vaccination
coverage make non-vaccinated individuals less likeky to vaccinate. These analysis
then underline the need to take into consideration interactions betweeen measles
propagation and vaccination diffusion in both ways.

We present here a model reproducing the evolution of measles in France in
which individual behavior as regards vaccination is modelled on the basis on
a related theoretical work based on vaccination diffusion[6]. For this purpose,
we also propose an original method for estimating simultaneously transmission
parameters and parameters related to vaccination diffusion from observed data.
The model used is presented §2 and the estimation procedure in §3. After having
described data used in §4, we present the results obtained in §5. We then conclude
(§6) by a discussion of the results obtained and the possible extensions of the
analysis performed.

2. Model Presentation

Most of the models used to assess the impact of vaccination on measles incidence
at a country level are of Realistic Age Structured (RAS) type [7][8][9]. As stated
by Bolker & Grenfell[10], these models, by taking into account the impact of age
heterogeneity and seasonal effects on the propensity to contract and to transmit
the disease, include the minimum level of complexity allowing to represent measles
dynamics. The only difference between RAS models and the one used in this
analysis relies on the inclusion of a modelling for the evolution of vaccination
coverage. It can be described by the following set of differential equations :



dS(a,t)
dt = (m(a) + λ(a, t)− v(a, t))S(a, t)

dE(a,t)
dt = λ(a, t) (S(a, t) + V s(a, t))− (m(a) + δ)E(a, t)

dI(a,t)
dt = δE(a, t)− (m(a) + ρ) I(a, t)

dR(a,t)
dt = ρI(a, t)−m(a)R(a, t)

dV P (a,t)
dt = e(a)v(a, t)S(a, t)−m(a)V P (a, t)

dV s(a,t)
dt = (1− e(a)) v(a, t)S(a, t)− (m(a) + λ(a, t))V s(a, t)

(2.1)

Measles propagation is represented by the evolution of 6 categories of states
variables representing the status of individuals of age a at date t : S(a, t) for
individuals susceptible to contract measles, E(a, t) for individuals exposed to the
virus but not yet infectious, I(a, t) for infectious individuals, R(a, t) for indi-
viduals having recovered from measles, V P (a, t) for individuals protected by an
effective vaccination and V S(a, t) for vaccinated individuals remaining suscepti-
ble to contract the disease. m(a) and e(a) defines respectively mortality rate and
vaccine’s efficacy at age a, δ and ρ the constant transition rates from exposed, to
infectious and recovered states. The age limit in the model (L) is fixed to 100
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years. To limit the number of state variables of the model for simulation con-
straints, the population in this model is divided in cohorts of age with a unique
date of birth by year (1st September). So, globally there is 600 state variables in
this model. (2.1) is solved using a 4th order runge kutta algorithm programmed
in Fortran 95 language with a step fixed to 1 day (year is the unit of time). To
simplify calculations, we have assumed a constant duration for each month (31
days).

It has to be noted that sometimes protection by maternal antibodies is taken
into account in this kind of model through a specific category of state variable.
Regarding the method of estimation used, we haven’t added this category of state
variable. The impact of the protection by maternal, which concerns exclusively
infants, is captured here through a lower values of the parameters related to the
propensity to contract the disease for children under one year of age.

The two most important parameters, or more precisely functions of parame-
ters, are the force of infection (λ(a, t)), and the vaccination rate (v(a, t)) which
determines respectively the number of individuals of age a who who contract
measles at date t and receive vaccination against measles.λ(a, t) is given by the
following expression :

λ(a, t) =

]
β(a, a�, t)I(a�, t)da� + λ0 (2.2)

β(a, a�, t) represent the propensity of infectious individuals of age a’ to trans-
mit the disease to individuals of age a. λ0 defines immigration of infectives from
an external reservoir. Excluding seasonal effects and considering that transmis-
sion rates remain constant in a given age group leads to the traditional WAIFW
matrix (Who Acquires Infection From Whom) for RAS models. If a belongs to
age class i, λ(a, t) can then be reexpressed as follows:

λ(a, t) =
[
j

βij

]
βIj(t) + λ0 (2.3)

βij are here the coefficients and Ij(t) the number of the infectious in the age class
j at date t.We will analyze 2 different configurations for WAIFWmatrix described
in Appendix A.

Seasonal effects are captured by considering that the propensity to contract
and transmit measles within children aged from 3 to 9 years changes each month of
the year. Multiplying coefficients {sk, k = 1, 11}1 are then used to complete para-
meters of the WAIFWmatrix related to 3 to 9 years old age group (β4 in WAIFW
matrix n◦1, β6,β7,β8,β9,β10 in WAIFW matrix n◦2). 3 to 9 years old children
are the age group in which the force of infection is the highest and correspond
to the age for infant schools and primary schools in France. Seasonal effects are

1Month n◦12 (August) is consider as the month of reference for the assessment of the impact
of seasonnality. Implicitely, s12 is then fixed to 1.
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in fact often related to the increase of contacts within school terms. That’s why
seasonal effects are usually taken into account this way in RAS models. Following
Ferguson et al.[1], it has nevertheless to be noted that using an unique birth date
for an entire cohort create also a baseline seasonnality. Then, adding explicitly
seasonality leads to complete and, eventually correct, this baseline seasonality.

The vaccination rate v(a, t) is given by the following expression:

v(a, t) =
fv(a, t)

1− Fv(a, t) (2.4)

Fv(a, t) refers to the proportion of individuals born at date t-a who consider
that vaccination is the best choice at date t. It has to be noted that Fv(a, t)
doesn’t indicate the proportion of effectively vacccinated individuals : some of the
individuals who would have been ready for vaccination at date t have contracted
measles previously or even are dead. Fv(a, t) is defined as follows :

Fv(a, t) = max
a

min
 G [a;α1,α2] ;

G

�
(α5+α6I(t))
(1+I(t))

(R(t)+α7)
(1+α7)

;α3;α4

� 
 (2.5)

G[] refer here to Gamma cumulative distribution functions with α1 and α3 as
shape parameters and α2 and α4 as scale parameters. R(t) indicates the percep-
tion by individuals of their risk to contract measles if they are not vaccinated at
date t, and I(t) the information given on vaccination by previously vaccinated
individuals. Fv(a, t) has been defined in reference to an analysis of vaccination
diffusion mechanisms based on an Bayesian approach[6] and take into account of
several elements:

• The first one is related to the age at which vaccination occurs : even if the
parents of a child concerned by vaccination are favorable to vaccination,
they may consider that their child must reach a given age before being
vaccinated. This effect can also be related to official recommendations as
regards the age of vaccination. G [a;α1,α2] express then the fact that as
the age increases, the proportion of a given cohort ready for vaccination is
also increasing.

• The second element is related to the perception of the value of vaccination.
This perception is updated after each piece of information on vaccination
received. This updating procedure modelled through a Bayesian approach
leads to the expression in the second bracket : at the beginning of vaccina-
tion the proportion of individual favorable to vaccination is based on α5 and
as I(t) increases this proportion becomes progressively entirely determined
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by α6. I(t) is defined as follows:

I(t) =

t]
tV

L]
0

z
k
V P (a, t�) + V S(a, t�)

l
dadt� (2.6)

I(t) corresponds to the traditional word-of-mouth effects in diffusion models[11]:
By their experience, previously vaccinated individuals or their relatives can
give indications to those who have not already made their decision regard-
ing vaccination. More generally, I(t) can be considered as a proxy variable
of the amount of information on vaccination circulating in the population.
For example, physicians who plays an important role for motivating the
parents of a child in age to be vaccinated become also more aware of the
consequences of vaccination as the number of vaccination they have achieved
increases. The constant z in I(t) is used for normalization (z = 10−8).

• The third element is related to the perceived risk to contract the disease.
As indicated above, the decrease of this risk for not vaccinated individuals
when the vaccination coverage increases appears as a key element in the
difficulties raised by eradication. In Fv(a, t) the role played by this percep-
tion is directly related to the value of α7. If α7 is close to 0, the evolution
of R(t) has a great impact on Fv(a, t) On the contrary is α7 has an high
value, the role of R(t) is limited. R(t) is defined as follows:

R(t) =

t−D]
t

L]
0

RNV
D

�
λ(a�, t�)

�
S(a�, t�) + V s(a�, t�)

��
da�dt� (2.7)

R(t) is based on the number of measles cases observed on a period ranging
from t to t−D. In fact, the effective risk to contract measles at date t for
a individual who hasn’t already chosen vaccination is not directly related
to measles incidence observed previously, but what is important here is not
the effective risk but the risk as it is perceived. Secondly, the only available
information at date t on this risk is based on the consequences associated to
measles in the past.RNVD is a constant used for normalization. RNV refers to
the mean annual incidence of measles before the introduction of vaccination
(in fact the annual incidence associated to the equilibrium state without
seasonality). So, using RNV

D ensures that R(t) will remain essentially lower
than 1.
Several values of D ranging from 4 years to 16 years will be tested during
estimation. In order to simplify calculations, we will also consider that
individuals update their perceptions of R(t) only once a year corresponding
to the date a new cohort is introduced into the model (1st september).

• The decision to delay vaccination because of age is not independant from
the perception of the value of vaccination. Here we consider that those who
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are the least favorable to vaccination are also those who fix the highest the
limit of age for vaccination. Then the proportion of the population ready
for vaccination at each age a corresponds to the minimum of the proportion
ready for vaccination regarding age and regarding the perceived value of
vaccination.

• Vaccination is an irreversible decision. That’s why Fv(a, t) has been defined
here as a non decreasing function remaining as the highest value achieved
since the birth of the cohort, even if the decrease of the perceived risk to
contract measles made vaccination less attractive after this maximum has
been achieved.

3. Estimation method

Traditionally, the method used to estimate transmission parameter in RAS model
is based on data observed before vaccination introduction[12]. For this method,
the first step is to estimate the force of infection corresponding to the age dis-
tribution of measles cases observed before vaccination. The second step is to
determine transmission coefficients by identification using the equilibrium state
in absence of vaccination associated to a RAS model without seasonality. This
method cannot be implemented with data observed after the diffusion of the
vaccine and is inappropriate to estimate parameters related to vaccination diffu-
sion. We then propose here an original method based on an Expectation-Method
algorithm2 allowing to estimate simultaneously transmission parameters and pa-
rameters related to vaccination diffusion using data observed after the diffusion
of the vaccine.

The method employed here uses longitudinal data about measles incidence
and evolution of the vaccination coverage in different age cohorts. The difficulty
raised by the use of this kind of data is that there’s no simple way to express the
quantities in a RAS model corresponding to these data, notably because of the
interactions between vaccination diffusion and measles propagation processes. To
overcome this difficulty, we calculate the evolution of the number of susceptibles
which would have been observed if there were no interactions between vaccination
diffusion and measles propagation processes. More specifically, for a given cohort
born at date t0, we calculate the two following expressions :

SPtc (a) = exp

− a]
0

λtc(a
�)da�

 (3.1)

SVtc (a) = exp

− a]
0

vtc(a
�)da�

 (3.2)

2See [13] for a general presentation of EM algorithms
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SPtc(a) defines the number of susceptibles in the cohort born at date tc who
would have been observed at age a if the process of virus propagation were inde-
pendent from vaccination diffusion and mortality (the only way to leave the state
of susceptible is to contract measles). Similarly SVtc (a) defines the number of sus-
ceptibles who would have been observed at age a in the tc cohort if the process of
vaccination diffusion were not affected by virus propagation and mortality. λtc(a

�)
and vtc(a

�) refer respectively to the force of infection and vaccination diffusion rate
corresponding to the number of measles cases and vaccinations observed at age
a’ in the cohort born at date tc. Calculating λtc(a

�) and vtc(a�) is a key element
in this estimation procedure and we will discuss it more extensively below (§4).

SPtc(a) and S
V
tc (a) give in fact an indirect information on measles incidence

and vaccination coverage allowing to proceed to estimations based on the Maxi-
mum Likelihood method for interval-censored data3. For this, the following Log-
likelihood functions can be used :

LP=
P[
c=1

NP
c[

i=1


�
SPtc (ai−1)− SPtc (ai)

�
ln

#
1− exp

#
−
ai+1U
ai

λ(a�, tc + a�)da�
$$

−SPtc(ai)
ai+1U
ai

λ(a�, tc + a�)da�


(3.3)

LV =
V[
c=1

NV
c[

i=1


�
SVtc (ai−1)− SVtc (ai)

�
ln (Fv(ai, tc + ai)− Fv(ai−1, tc + ai−1))

+SVtc (ai) ln (1− Fv(ai, tc + ai))
−SVtc (ai−1) ln (1− Fv(ai−1, tc + ai−1))


(3.4)

P and V defines the number of cohorts on which data are available, NP
c and

NV
c the number of intervals for which information are available in the cohort c.

Whatever the cohort considered a0 is set to 0.
To proceed to the estimations, we not only need to calculate SPtc(a) and S

V
tc (a),

but also the values of regressors determining the value taken by the λ(a�, tc + a�)
and Fv(ai, tc+ai) (i.e.: R(t), Ij(t) and I(t)). All these calculation can be achieved
along with the resolution of (2.1).

As vaccination diffusion and virus propagation are not really independent
processes and that the value of regressors depends on the initial value chosen for
the parameters to be estimated, the only maximization of LP , LV doesn’t lead
to the correct value for αi,βi,j, sk parameters. Nevertheless, the deterministic
version of the RAS model used in this analysis defines the expectation of the
global process we want to estimate. So, the calculations and estimations described
above defines the expectation and maximization step of an EM algorithm which

3For a presentation of Maximum Likelihood estimation of interval-censored data, see for
example[14].
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will converges to the correct value of αi,βi,j , sk after a set of iterations. This one
can then be defined as follows :

• E-step : Calculation of SPtc(a), SVtc (a), R(t), Ij(t) and I(t) along with the
resolution of the set of differential equations (2.1) defining the model.

• M-step: Estimation of the αi,βi,j , sk parameters by maximizing separately
the log-likelihoods LP and LV .

After each iteration the estimate values of αi,βi,j, sk are used as initial values
for the next iteration. Convergence is considered as obtained if the difference
between the values of any parameter doesn’t exceed 1% in absolute value. The
convergence criterion, assuming that no parameter has a zero value, can then be
then defined as follows :

∀i, j, k
����� eαli − eαl−1ieαl−1i

����� < 0.01,
������
eβli − eβl−1i−1eβl−1i−1

������ < 0.01,
����� esli − es

l−1
i−1esl−1i−1

����� < 0.01 (3.5)

eαli, eβli, esli defines the adjusted value αi,βi,j , sk obtained at iteration l.
If we have insisted on the fact that this EM algorithm allows to perform

estimation despite the complexity of the process on which this model is based,
one of his interest is also to make possible estimation even if only incomplete
information is available on measles incidence and vaccination diffusion, which
is the case here (Cf. §4). This incompleteness doesn’t modify the estimation
procedure. It nevertheless implies to determine initial values for the E-step of
the first iteration. For the transmission parameters, these initial values can be
obtained from previous works using RAS models. We have used here the evolution
of force of infection according to age considered by Levy-bruhl et al. [7] in an
analysis also focused on measles propagation in France. We then have carried out
the usual identification method to determine transmission parameters from these
data. For parameters related to vaccination diffusion in the absence of available
initial values for parameters, we have build a complete set of data for the period
considered in the analysis using extrapolation from observed data.

Another problem raised by available data is that is difficult to determine
the exact size of the population on which each measles incidence data is based
(measles transmission) or that data came from different sources differing as re-
gards methodology and exhaustiveness (vaccination coverage). We have then
made the choice here to give a similar weight to each cohort of age fixed to 1.
This make difficult to assess the global accuracy of the estimation carried out.
We then use the 95% confidence interval associated to each parameter to assess
the quality of adjustment. This 95% confidence interval is calculated through
naive bootstrapping using 1000 simulations. We also consider pseudo-R2 ratios
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to obtain information on the quality of adjustment (Cf. Appendix B for the
calculation of this pseudo-R2).

It also has to be noted that if this estimation procedure has been developed
to allow the estimation of vaccination diffusion, it presents some advantages for
the estimation of transmission parameters as compared to the usual method :

• It allows to use data on measles incidence observed after the introduction
of the vaccine. That is to say the most recent data available on measles
incidence As the modifications of the social environment over time (the
decrease of the mean age at the beginning of scolarization for example)
has an impact on the propensity to transmit and to contract the disease,
this is an important element. Moreover, there’s no reliable data on measles
incidence in France before the introduction of the vaccine.

• The identification step in the usual method implies the use of specific con-
figurations for the WAIFW matrix (a number of transmission coefficients
having a different value equivalent to the rank of the WAIFW matrix. This
is not the case with the method used here. It then allows to assess the
accuracy of usual configurations of WAIFW matrix.

• The parameters related to seasonality are usually estimated separately using
a least squares method and a few number of parameters (see for example[10]).
Here parameters related to seasonality are estimated simultaneously with
the transmission coefficients of the WAIFW matrix.

4. Data

We present successively below the data used for measles incidence and evolution
of vaccination coverage in France and conclude this section by a brief presentation
of the other data used in this analysis. Considering data available, the period of
reference in this analysis goes from September 1969 (diffusion of measles vaccine)
to April 2001 (latest data on measles incidence).

4.1. Measles incidence

The main source of information about measles incidence in France is the surveil-
lance achieved by the Sentinel Network4. Sentinel network collect information
about measles incidence since November 1984 with the help of around 500 gen-
eral practitioners volunteer for this surveillance5. Based on the cases on which
data are collected (7331 cases for the period considered in this analysis), sentinel

4See[15] for a brief presentation of the sentinel network. Extensive information are also
available on the following website : http://www.b3e.jussieu.fr/sentiweb/

5The number of these General Practitionners vary over time and goes from 442 in 1998 to
614 in 1994.
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network is able to give information on the age distribution of measles and cases
and to extrapolate the monthly number of measles cases in France, which is the
information used here. These data are depicted Figure 1.
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Figure 3.1 Monthly number of measles cases based on Sentinel Network
surveillance From November 1984 to April 2001

Data collected by the Sentinel network make possible to characterize each
month the proportion of measles case at each age. Nevertheless, if the represen-
tativeness is correct for low ages because of a higher force of infection, this is not
the case for older ages : the proportion of adult cases is around 4%. We have
then used 13 classes for the age distribution of monthly number of measles cases :
a specific class for each age lower than 10, and 3 classes for respectively teenagers
of 10 to 14 years, 15 to 19 years and adults of 20 years and over.

To include measles incidence data into the model, we have determined for each
age class and month the constant forces of infection corresponding to the number
of cases derived form sentinel network surveillance (the λtc(a

�) cited above, §2).
this has been done by using a least squares minimization based on a standard
algorithm (Levenberg-Marquard). The error level associated to this calculation
is very low and never exceed 10−5. For periods for which no data is available, the
evolution of measles incidence is determined by using the value of transmission
parameters at the current iteration.

It has to be noted that using as data the monthly number of measles cases in
France required that the size of the population considered in the model is similar
to the one of the French population. The size of each cohort at birth has then be
determined using data of the French Agency of statistics INSEE. Age mortality
rates are also based on INSEE data and we have used a specific rate for each age.
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4.2. Vaccination coverage

In France, measles vaccination is not mandatory but is strongly recommended by
health authorities. Since 1997, the recommended scheme for measles vaccination
includes two vaccinations : the first one to be given before 2 years of age and the
second one between 3 to 6 years of age6. Our analysis is yet focused here only
on the first vaccination notably because data used are related to generations not
concerned by this new recommendation. Gathering information from the different
sources existing on this point in France leads to 54 points of observation related
to 23 generations born between 1969 and 1997 (see. Table 4.1).

9 months 1year 1 year 3 months 1 year 6 months 2 years 4 years 6 years

1969 0.04

1971 0.08

1973 0.11

1975 0.13

1977 0.15

1979 0.008 0.037 0.091 0.189 0.261

1981 0.005 0.03 0.1 0.173 0.22 0.371 0.412

1982 0.29

1983 0.01 0.055 0.187 0.312 0.35 0.553 0.588

1984 0.394

1985 0.012 0.045 0.106 0.456 0.72

1986 0.515

1987 0.049 0.408 0.588 0.815

1988 0.67

1989 0.735 0.816

1990 0.755 0.84

1991 0.778 0.852 0.9

1992 0.803 0.88

1993 0.826 0.886

1994 0.838 0.908

1995 0.833 0.912

1996 0.825

1997 0.827

GENERATION
AGE

Table 3.1 Evolution of vaccination coverage against measles in France
(generations 1969-1997)

Data presented Table 3.1 came from four different sources : Surveys carried
out by physicians working for the public education system on the vaccinal status
at 4 years old (1989 to 1995 generations) and 6 years of age (1979, 1981, 1983,

6 Information about official recommandations in France concerning measles vaccination are
available on the website of the Institut de Veille Sanitaire (http://www.invs.sante.fr/).
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1985, 1987, 1991 generations), systematic report achieved in the context of the
mandatory medical consultation at 2 years old (1984 to 1997 generation) and
finally data collected from the main vaccine’s manufacturer for a study used to
establish the new recommendation (1969, 1971, 1973, 1975, 1977 generations, see
[7]). A detailed presentation on data available on vaccination coverage in France
can be found in a technical report of INVS[16].

These information don’t allow to assess directly the monthly progression of
vaccination coverage. Regarding the evolution observed, using a constant rate
between two ages for which data is available is not a good approximation. Such
as for measles incidence, we have then assumed that vtc(a

�) remain constant only
on a monthly interval. To rebuild the monthly progression of vaccination cover-
age, we have used linear approximation for the first iteration. For the following
iterations, this monthly progression is based on estimation of Fv(a, t) at the cur-
rent iteration. Given this information , the constant vtc(a

�) has been determined
through least squares minimization. Such as the λtc(a

�), the error level associated
to this calculation never exceed 10−5.

For generations for which no data is available and beyond the age for which
data are available for generations mentioned in Table 4.1, linear approximation
for the first iteration and estimation of Fv(a, t) for the following iterations have
also been used to determine the progression of vaccination coverage.

4.3. Duration of Measles

For the duration of an episode of measles, data used are similar to those of
Anderson and May[2] : 7 days for the mean duration of the period during which
an individual is exposed but not infectious which leads to 1/δ = 7/365 and 7 days
for the mean duration of the infectious period which leads to 1/ρ : 7/365.

4.4. Vaccine’s efficacy

Data on vaccine’s efficacy are similar to those by Levy-bruhl et al.[7]: 92.5% until
18 months of age, 95% beyond.

5. Results

5.1. Measles transmission

As discussed when presenting the method of estimation, it is possible to define
WAIFW matrix different from the usual ones (a number of coefficient having
a different value equivalent to the rank of the matrix). We have nevertheless
made the choice to limit our investigation to these configurations. Reasons for
this choice are twofold. The first one is that the aim of this analysis is to add
vaccination diffusion in an usual measles dynamics model not to build a model for
measles dynamics different from the usual ones. The second reason is that the kind
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of model used can lead to chaotic evolution when theWAIFWmatrix has a general
form (See [1] for an analysis of this point). Yet, observed evolution for measles
incidence at a country level is of cyclic form (either biennal or triennal). Moreover,
chaotic evolution make convergence difficult to achieve. Results associated to 4
different models are presented here :

• Model W7-S : Use of WAIFW n◦1 with 7 age classes completed by para-
meters related to seasonality.

• Model W13-S : Use of WAIFW n◦2 with 13 age classes completed by para-
meters related to seasonality.

• Model W13-NS : Use of WAIFW n◦2 with 13 age classes without parame-
ters related to seasonality.

• Model W13-NI : Use of WAIFW n◦2 with 13 age classes with parameters re-
lated to seasonality but without parameters related to measles transmission
due to immigration of infectives (λ0).

To prevent the impact of interactions between estimations of measles propa-
gation and vaccination diffusion, we have used for each of these models the same
configuation regarding vaccination diffusion, the one considered in the R16 model
defined below.

13



β0∗106 2.58 (1.29-4.56) 1.47 (0.23-3.36) 1.38 (0.24-3.2) 1.71 (0.59-3.56)
β1∗106 8.42 (7.13-9.97) 8.26 (6.94-9.74) 8.79 (7.41-10.48)
β2∗106 12.35 (10.08-15.51) 12.22 (9.98-15.27) 13.23 (10.61-16.3)

β1−2∗106 11.79 (10.39-13.28)
β3∗106 13.34 (8.51-18.97) 23.6 (20.45-27.2) 13.94 (8.47-19.87)
β4∗106 19.54 (12.18-28.33) 35.09 (30.27-40.33) 20.35 (12.17-30.28)

β3−4∗106 30.87 (28.11-33.71)
β5∗106 30.86 (18.77-45.37) 56.34 (46.37-66.15) 31.88 (18.79-48.18)
β6∗106 62.57 (34.86-98.57) 113.3 (81.17-144.41) 64.89 (35.99-102.01)
β7∗106 20.65 (10.14-34.06) 38.73 (23.34-56.25) 21.77 (10.51-34.73)
β8∗106 15.13 (7.49-24.95) 25.84 (13.59-38.29) 16.19 (8.11-25.87)
β9∗106 9.27 (4.65-15.04) 16.53 (9.01-24.97) 10.75 (5.05-17.95)

β5−9∗106 17.63 (9.32-29.24)
β10+∗106 6.74 (4.14-9.47) 14.56 (12.96-16.31) 15.44 (13.75-17.1) 16.28 (14.7-17.85)
β15+∗106 2.62 (1.51-3.99) 9.27 (7.47-11.13) 10.29 (8.59-12.36) 11.4 (9.52-13.27)
β20+∗106 0.19 (0.05-0.36) 8.47 (6.68-10.54) 9.94 (7.9-12.26) 14.84 (11.73-17.96)
λ0∗106 131.13 (73.27-199.51) 147.09 (49.33-247.63) 127.32 (36.01-226.22)

s1 0.64 (0.13-1.44) 0.34 (0.05-0.79) 0.41 (0.12-0.93)
s2 2.72 (1.39-5.19) 2.13 (1.37-3.47) 2.26 (1.5-3.83)
s3 2.34 (1.17-4.57) 1.95 (1.28-3.36) 2.03 (1.28-3.39)
s4 2.97 (1.72-5.5) 2.21 (1.55-3.54) 2.2 (1.51-3.62)
s5 2.03 (1.2-3.93) 1.55 (1.03-2.6) 1.58 (1.02-2.72)
s6 3.02 (1.84-5.48) 1.86 (1.31-2.95) 1.83 (1.25-3.01)
s7 2.61 (1.55-4.84) 1.85 (1.28-3.06) 1.81 (1.25-3.03)
s8 2.82 (1.67-5.1) 1.88 (1.31-3.02) 1.82 (1.26-3.03)
s9 2.74 (1.61-5.01) 1.88 (1.32-3.01) 1.83 (1.26-2.98)
s10 2.86 (1.74-5.1) 1.97 (1.4-3.14) 1.92 (1.33-3.21)
s11 2.3 (1.32-4.35) 1.71 (1.17-2.83) 1.66 (1.15-2.78)

Log-likelihood

PR2
I

PR2
II 0.712

-36.78

0.723

-36.77

0.711

0.688 0.661 0.653

Model W7-S Model W13-S Model W13-NS

-37.14

Model W13-NI

-36.72

0.659

0.722

Table 5.1 Results of the estimation of transmission parameters

The results presented Table 2 underline the good quality of the adjustement
performed. Whatever the model consider, each of the parameter has the expected
sign and is significatevely different from 0 and the pseudo-R2 measures are around
70%. In fact, the quality of adjustment is rather good if one considers the overall
measles incidence but is poorer when considering specifically age groups for which
measles incidence is low (see Figure 4.1, Figure 4.2). This result can be at first
related to the quality of the data used in this analysis. It has been pointed
out notably that this quality becomes questionable for a low level of measles
incidence[17].
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Figure 4.1 Observed and Estimated monthly measles incidence (All age classes —
Model W13-S).
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Figure 5.2 Observed and estimated monthly measles incidence (20 years and
over adults only - Model W13-S)

The second element which can be noted is that the increase of the number of
parameters of the WAIFWmatrix, such as the introduction of seasonality, induces
only a slight change of the quality of adjustement : Pseudo-R2 of type I (based
on log-likelihood) go from 67.1% to 68.0% and Pseudo-R2 od type II go from
71.1% to 72.2%. RAS models ability to describe measles can be put forward for
explaining this result. This ability becomes less good as the level of vaccination
coverage increases notably because of possible spatial decorrelation (see [3] for a
discussion of vaccination on measles dynamics). Refining WAIFW matrix then
only leads to slight improvements of the adjustement, not to a modification of
the overall ability of the RAS model to describe measles dynamics.

According to the values associated to s1-s11, measles transmission seems lower
in September (s1) and August (month of reference). These results can at first be

15



related to the usual explanation for seasonal effects in measles transmission : this
one is higher at the beginning of school year and lower during summer holidays.
The value associated to s1 can also be related to the fact that in the model all
infants in a cohort are considered as having the same birth date. As indicated §2,
this creates a baseline seasonality that the low value associated to s1 contributes
to attenuate.

The quality of the adjustment performed can also be assessed by comparing
results obtained with the ones associated to the usual method. Here initial val-
ues for transmission parameters are those of an analysis also focused on measles
transmission in France [7] and have been determined through the usual method.
So, they can be used for this comparison. These initial values lead to pseudo-R2

of around 55% (55.7% for PR2I , 55.5% for PR
2
II) for the Model W13-S. This gives

an indication that the method employed here outperforms the usual one.

5.2. Vaccination diffusion

Such as for the estimation of transmission parameters, several specifications have
been tested for the estimation of vaccination diffusion. 5 specifications which
differs according to the duration of the period considered to assess the perceived
risk to contract measles have been in fact analyzed :

• Model R16 : Perceived risk to contract measles based on the number of
measles occurred during the 16 last years

• Model R12 : Perceived risk to contract measles based on the number of
measles occurred during the 12 last years

• Model R8 : Perceived risk to contract measles based on the number of
measles occurred during the 8 last years

• Model R4 : Perceived risk to contract measles based on the number of
measles occurred during the 4 last years

• Model NR : Perceived risk to contract measles not included in the specifi-
cation of FV (a, t)

For these 5 models, we have considered the same configuration for the trans-
mission parameters, the one corresponding to the model W13-S defined above.

16



Model R4 Model R8 Model R12 Model R16 Model NR

α1 18.32 18.34 16.65 18.54 18.3
(15.66-21.5) (15.65-21.15) (14.73-20.62) (15.54-21.36) (15.62-21.27)

α2 11.22 11.23 10.29 11.33 11.21
(9.64-13.03) (9.7-12.84) (9.15-12.53) (9.64-12.98) (9.71-12.93)

α3 2.51 2.87 3.34 6.7 2.48
(1.65-6.26) (1.62-7.94) (1.58-8.43) (1.65-12.54) (1.52-6.07)

α4 501.69 114.77 10.29 21.08 23.14
(455.15-646.22) (37.48-213.29) (1.8-24.93) (1.21-34.21) (19.12-29.64)

α5 0.001 0.01 0.1 0.16 0.03
(0.001-0.01) (0-0.03) (0.03-0.41) (0.03-0.39) (0.01-0.13)

α6 0.02 0.1 1.47 1.16 0.42
(0.01-0.04) (0.06-0.23) (0.63-4.85) (0.39-6.19) (0.3-0.74)

α7 162.9 11.6 3.01 2.32
(2.44-1276.98) (2.33-825.77) (1.65-345.99) (1.55-248.87)

Log-likelihood -16.993 -16.993 -17.031 -16.987 -16.993

PR2
I 0.944 0.9439 0.9387 0.9447 0.944

PR2
II 0.9709 0.9708 0.9691 0.9713 0.9709

Table 5.2. Results of the estimation of parameters related to vaccination
diffusion

As previously, the estimation performed leads to a good quality of adjustment.
This one is even excellent if one considers the values associated to the pseudo-R2

measures : pseudo-R2 of type I are all higher than 93% and pseudo-R2 of type
II are all higher than 96%. This result can also be illustrated graphically by
comparing the observed and estimated vaccination coverage rates at 2 years, 4
years and 6 years (Cf. Figure 5.3).
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Figure 5.3 Observed and estimated vaccination coverage at 2 years old (Model
R16)
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Figure 5.4 Observed and estimated vaccination coverage at 6 years old (Model
R16)

The inclusion into FV (a, t) of the impact of the perceived risk to contract
measles only induces a slight improvement of the quality of adjustment : +0.07%
for pseudo-R2 of type I and +0.04% for pseudo-R2 of type II. Moreover, the
best quality of adjustement is obtained with a long duration associated to the
calculation of this risk (model R16). This result seems to indicate that individuals
are not really sensitive to the decrease of the risk to contract the disease for their
choice regarding measles vaccination. The large confidence intervals associated
to the value of α7 whatever the model considered give also a confirmation of this
result.

The low impact of the perceived risk to contract measles for explaining vac-
cination diffusion can also be related to the difficulty for accurately capturing
this element into a model. Here we have chosen specifications for this risk based
on the number of measles cases observed during rather long periods. The way
individuals perceive this risk could be different. It seems for example that for
their choice regarding vaccination individuals react more to a rapid upsurge of
the incidence than to the decrease of the incidence of a disease in the long run
[18]. It also have to be noted that the value associated to R(t) depends of the
quality ot the adjustment of measles propagation performed, which is not perfect.
Finally, as for measles incidence, the quality of data used can also be put forward
for explaining the results obtained. Data used for vaccination coverage came from
heteregenous sources, each of them being not totally free of bias (Cf. [16]). It
is then difficult with these data to estimate accurately a model based on a too
complex representation of individual behaviour regarding vaccination.
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5.3. Predicted evolution of measles

The results of the estimation performed can be used to predict the evolution
of measles in France in the next future. Nevertheless, as noted above (Cf. §4),
the current vaccination strategy in France differs from the one considered in this
analysis : the second vaccination to be given between 3 and 6 years old has not
been included. The predicted evolution of measles presented here gives then only
a indirect information on the way measles should affect the French population in
the next future. This information thus remains useful to discuss the ability to
eliminate native measles in France which is the goal fixed by Health authorities
in accordance with Regional WHO office for Europe7.

The predicted evolution of measles incidence differs according to the inclusion
into the model of the impact of measles transmission from infectives coming from
an external reservoir. When this element is taken into account (Cf. Figure 5.5),
measles incidence is increasing slowly over the period 2001-2050 with an annual
incidence of about 3/100 000 inhabitants in 2002 and 12/100 000 inhabitants in
2050. When this element is not taken into account, measles incidence remains very
low most of the time (annual indicence of about 0.3/100 000 in 2020), but major
outbreaks occurs every fifteen years (Cf. Figure 5.6). None of these scenarios
can be viewed as a perfect prediction of measles evolution in France but each of
them gives a clear indication on what measles dynamics could have been with a
strategy based on a unique vaccination : a mean annual incidence which remains
higher than the threshold fixed for elimination (1/100 000) and a potential risk
of major outbreak..
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Figure 5.5 Predicted evolution of monthly mealse incidence over the period
2001-2050 (Model W13-S)

7Elimination of native measles is considered as reached when annual measles incidence is
lower than 1 case for 100 000 inhabitants. Information about official recommandations in France
concerning measles vaccination are available on the website of the Institut de Veille Sanitaire
(http://www.invs.sante.fr/).
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Figure 5.6 Predicted evolution of monthly measles incidence over the period
2001-2050 (Model W13-NI)

The predicted evolution of vaccination coverage gives also useful indications
and the evolution of measles in France. According to the results obtained, the
vaccination coverage rate at 2 years old should remain below 85% (Figure 5.7)
but could reach nearly 100% at 6 years old (Figure 5.8). These results which are
dependant of the specification chosen for FV (a, t) such as of the data used for
estimation have to be interpreted cautiously. They nevertheless indicate that if
there is a margin of progression for vaccination coverage, it’s rather by increasing
the number of vaccination achieved between 2 and 6 years old, than by increasing
the number of vaccination achieved before 2 years old.
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Figure 5.7 Predicted evolution of vaccination coverage rate at 2 years old
(Generation 1992-2045 - Model R16)
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Figure 5.8 Predicted evolution of vaccination coverage at 6 years old
(Generation 1998-2049- Model R16)

The evolution of measles in France which can be derived from the estimation
performed gives strong arguments for the inclusion of a second dose of vaccination
in the recommended strategy for measles. With a strategy based on a unique
vaccination, elimination seems hard to obtain, notably because the vaccination
coverage at 2 years old seems to have reached its upper bound these last years.
A second dose of vaccination to be given between 3 to 6 years old will then gives
an opportunity not only to limit the impact of vaccine’s failures but also to make
easier the vaccination of those not vaccinated at 2 years old.

6. Discussion

The analysis performed proves than mixing economic models of innovation diffu-
sion and epidemiological modes of infectious disease dynamics is not only feasible
but also useful. The model built gives a more complete description of the evo-
lution of measles in France than those focused only on measles propagation. Its
value is twofold : it allows to take into account of the iteractions between vac-
cination diffusion and measles propagation but also to take advantages of the
latest data available on these topics. Regarding the complexity of the dynamics
associated to measles and the difficulties for obtaining accurate data for feeding a
too complex model, it can’t be however considered as a perfect represention but
rather as a tool giving indications on the main factors having an impact on the
evolution of measles in France.

The estimation achieved leads to a good fit of the overall observed measles
incidence, outperforming the usual method[12]. The fit carried out is however
poorer when one considers specifically age groups for which measles incidence is
the lowest. This result can at fist be related to the overall ability of RAS models
to describe measles dynamics. This ability becomes less good as the level of vac-
cination coverage increases [3]. It has to be noted nevertheless that we have made
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the choice to limit our investigations to the usual configurations of the WAIFW
matrix (i.e symetric matrix with a number of coefficients having a different value
equal to the size of the matrix). The main focus is here the addition of a specific
modelling for vaccination diffusion in an usual measles dynamics model. Using a
more general form for the WAIFW matrix could be helpful to improve the quality
of adjustment performed in each age group. More generally, the kind of analy-
sis performed does not necessarily imply the use a RAS-type model to represent
measles propagation. If data are available, it could be interesting to add a specific
modelling for vaccination diffusion into a different kind of measles dynamic model
(a model including spatial heterogeneity for example).

The type of data used has also an impact on the quality of the adjustment
performed. It has been pointed out that the quality of Sentinel data becomes
questionable for a low level of measles incidence (on this point, see nevertheless
the answer given by the persons in charge of the Sentinel nework [19]). Another
problem is that sentinel surveillance relies on clinical data alone and the risk
that cases observed are not really due to measles becomes greater as this disease
becomes rarer. Using a different dataset, such as the seroepidemiological data
collected through the ESEN survey[20], could also be helpful for improving the
quality of the adjustment performed.

Even if it is based on fewer data, the adjustment of vaccination diffusion car-
ried out appears to be better than the one achieved for measles propagation. The
sigmoid shape, which is usual for innovation diffusion[11] and is also observed for
measles vaccination, is well captured by the specification chosen in this analysis.
This is also true for the two dimensions in which the evolution of vaccination
coverage has to be analyzed: within a generation as age increases and between
successive generations.

Regarding the estimation of vaccination diffusion, the main result is however
that the risk to contract the disease, despite its key role in theoretical analysis
[5][6], does not seem to play an important role in vaccination diffusion. Again,
two reasons can be given for this result : the limitations of the specification chosen
and the quality of the data used.

The main problem regarding the specification chosen is related to the diffi-
culty to define an appropriate variable for the risk to contract measles, principally
because what is important here is not the true risk but the risk has it is perceived.
What is clear when one considers data, is that there is not a direct relationship
between the variation of measles incidence and the variation of vaccination cov-
erage. That’s why we have related in this analysis the perceived risk to contract
measles to the evolution of measles incidence on a rather long period (from 4 to
16 years). On the opposite, what is also clear is that obtaining a level of vacci-
nation coverage high enough to eliminate a vaccine-preventable disease is always
a difficult task, though not impossible (Cf. smallpox). This is exactly the result
predicted by theoretical analysis focused such as the current situation for measles
in France. Indeed, it seems that, if individuals are sensitive (or at least a part
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of the population) to the risk to contract the disease for their choice regarding
vaccination, the way they perceives this risk is rather irrational. For example,
individuals seems to react more to a rapid upsurge of the incidence of a disease
than to the decrease of this incidence in the long run [18].

Going further than here certainly implies to use directly information on the
way individuals perceives the risk to contract measles. Information on the way
vaccination is perceived exists in the French case (Cf. for example [21]), but this
information is not really adapted to the kind of analysis performed here. The
problem in this area is to obtain information on the evolution on the perception
of vaccination over time in relation with the evolution of the perceived risk to
contract the disease.

It has be noted that the estimation of vaccination diffusion carried out relies on
a relatively few number of data (54 points of observation related to 23 generations)
coming from 4 heterogeneous sources. This also limits the ability to obtain a good
fit for a too complex representation of individual behaviour regarding vaccination.
The decision not to vaccinate a child may either be interpreted as the fact that
his parents considered him as too young, estimates that the risk associated to
vaccination is too high or that the risk to contract measles is too low. Only
a large number of data allows to discriminate between these elements. As the
impact of the risk to contract measles is the hardest to capture, it is also the one
for which the adjustment is the poorest.

Regarding the elimination goal fixed by French health authorities for measles,
the main result of this analysis is the confirmation of the need of a strategy
including two doses of vaccine. An unique dose does not allow to go beyond the
threshold for annual incidence fixed for elimination of native measles (1 case for
100000 inhabitants) and the risk of major outbreaks cannot be avoided.

This analysis constitues a firts step in including specifc modelling for vaccina-
tion diffusion into model focused on the dynamics of vaccine-preventable diseases.
If some work can still be done to improve the quality of the adjustment perfor-
mend in the case of measles, the method employed can also be adapted to other
vaccine-preventable diseases such as mumps, rubella or even hepatitis B. More
generally, this kind of analysis can also be used to include every kind of iterac-
tions between infectious disease dynamics and individual behaviour. Regarding
this last point, the case of AIDS seems particularly interesting to analyze[22].

7. Appendix

7.1. Appendix A: WAIFW matrix configurations

We use two different configurations for the WAIFW matrix which are similar to
the ones usually considered : symetric matrices with a number of coefficients
having a different value equal to the size of the matrix[1]. The propensity of
infectious individuals to transmit measles to susceptibles individuals is assumed
constant within age classes considered in these matrices. For example, β5−9
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defines the propensity that a infectious child aged from 5 to 9 transmit measles
to a susceptible also aged from 5 to 9 years.

0y. 1-2y. 3-4y. 5-9y. 10-15y. 15-20y. 20+y.
β0 β0 β0 β0 β10+ β15+ β20+

β0 β1−2 β1−2 β1−2 β10+ β15+ β20+

β0 β1−2 β3−4 β3−4 β10+ β15+ β20+

β0 β1−2 β3−4 β5−9 β10+ β15+ β20+

β10+ β10+ β10+ β10+ β10+ β15+ β20+

β15+ β15+ β15+ β15+ β15+ β15+ β20+

β20+ β20+ β20+ β20+ β20+ β20+ β20+

WAIFW matrix n◦1 using 7 age classes

0y. 1y. 2y. 3y. 4y. 5y. 6y. 7y. 8y. 9y. 10-15y. 15-20y. 20+y.

β0 β0 β0 β0 β0 β0 β0 β0 β0 β0 β10+ β15+ β20+

β0 β1 β1 β1 β1 β1 β1 β1 β1 β1 β10+ β15+ β20+

β0 β1 β2 β2 β2 β2 β2 β2 β2 β2 β10+ β15+ β20+

β0 β1 β2 β3 β3 β3 β3 β3 β3 β3 β10+ β15+ β20+

β0 β1 β2 β3 β4 β4 β4 β4 β4 β4 β10+ β15+ β20+

β0 β1 β2 β3 β4 β5 β5 β5 β5 β5 β10+ β15+ β20+

β0 β1 β2 β3 β4 β5 β6 β6 β6 β10 β10+ β15+ β20+

β0 β1 β2 β3 β4 β5 β6 β7 β8 β10 β10+ β15+ β20+

β0 β1 β2 β3 β4 β5 β6 β8 β8 β10 β10+ β15+ β20+

β0 β1 β2 β3 β4 β5 β10 β10 β10 β10 β10+ β15+ β20+

β10+ β10+ β10+ β10+ β10+ β10+ β10+ β10+ β10+ β10+ β10+ β15+ β20+

β15+ β15+ β15+ β15+ β15+ β15+ β15+ β15+ β15+ β15+ β15+ β15+ β20+

β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+ β20+

WAIFW matrix n◦2 using 13 age classes

7.2. Appendix B : Pseudo-R2

We use 2 different kinds of pseudo-R2 in this analysis called respectively PR2I and
PR2II . This follows the recommendation of Amemiya[23] to use several kinds of
Pseudo-R2 to assess the quality of the fit achieved. These two kinds of pseudo-
R2 are used either for the estimation of transmission parameters and for the
estimation of the parameters related to vacccination diffusion. The first kind of
pseudo-R2 is similar to the one defined by Mac Fadden but takes into account of
the fact that for interval-censored data, even for a perfect fit, the log-likelihood
can’t reach 0 and will always be lower or equal to a maximum defined as LMAX .

For the estimation of transmission parameters, PR2I is then given by the
following expression :
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L0 defines above the log-likelihood associated to the zero model that is to say

the model with an hazard rate assumed constant.
The second kind of pseudo-R2 is based on the comparison of the sum of

squared errors rather than on the comparison of log-likelihood. PR2II is given by
the following expression:

PR2II = 1−

NS
i=1

k
Yi − eYil2

NS
i=1

k
Yi − eY 0i l

Yi defines above observed data (monthly measles case in a given age group or
evolution of the vaccination coverage in a given cohort and time interval), eYi the
estimates associated to the model considered and eY 0i the estimates associated to
the zero model (hazard rate assumed constant).
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