

DESIGN CONSIDERATIONS IN MULTINATIONAL ECONOMIC EVALUATIONS

Michael Drummond¹
Andrea Manca¹
Mark Sculpher¹
Francis Pang²

- 1. Centre for Health Economics, University of York, York, UK
 - 2. Abbott Laboratories, Maidenhead, UK

OUTLINE OF PRESENTATION

- The dilemma posed by multinational studies.
- An additional complication.
- Possibilities for multilevel modelling.
- Design implications for future multinational evaluations.

THE DILEMMA POSED BY MULTINATIONAL STUDIES

- Factors, varying from place to place, may impact on cost-effectiveness.
- Data needs to be gathered from a range of healthcare systems with different information systems and accounting conventions.
- Resource use data collected alongside multinational clinical trials cannot simply be pooled.

OPTIONS FOR THE ANALYST

- Model, using the clinical data alone.
- Develop strategies to transfer economic data from one setting to another, or to analyse multinational economic clinical trials.

WHY NOT MODEL USING THE CLINICAL DATA ALONE?

- Some decision makers prefer to see trial-based economic evaluations.
- A trial is a good vehicle for collecting patient-level resource use data (despite all the problems!).

STRATEGIES TO ANALYSE MULTINATIONAL ECONOMIC CLINICAL TRIALS

- 'Relative resource reduction' approach Jönsson and Weinstein (1997).
- 'Test of interaction' approach Cook et al (2002).
- 'Regression' approach Willke et al (1998), Koopmanschapp et al (2001).

AN ADDITIONAL PROBLEM

- Multinational clinical trials not only involve several countries, they may involve several clinical centres within a country.
- Patients within a centre are more similar (in respect of treatment patterns) than those from different centres (ie, *clustering*).
- Ignoring 'centre effects' may lead to p-values too small, biased estimates and misleading confusions (Localio et al, 2001).

ANALYTICAL APPROACH

- Multilevel models explicitly account for the hierarchical structure of the data (level-3: country; level-2: hospital; level-1:patients).
- Allow a more accurate assessment of the costeffectiveness of alternative strategies, producing accurate parameter estimates.
- Facilitates the exploration of variability of costeffectiveness results by location-related factors such as country, centre, clinician.

CASE STUDY: THE EVALUATE TRIAL

- Multicentre RCT comparing laparoscopic-assisted (n=573) versus abdominal hysterectomy (n=286).
- Total of 25 English centres with 528 patients in total.
- Median follow-up of 12 months.
- Follow up: baseline, 6-week, 4 and 12 months.
- Cost analysis from UK NHS perspective.
- Health outcomes in terms of QALYs.

ACCEPTABILITY CURVES

DESIGN CONSIDERATIONS FOR FUTURE MULTINATIONAL EVALUATIONS

- Selection of countries in multinational trials.
- Selection of centres in trials.
- Collection of centre-level variables.
- Selection of resource items for costing.

SELECTION OF COUNTRIES

- Currently this is based on political expediency or logistical reasons.
- Should the selection of countries take account of the level of similarity of healthcare systems?
- Are there natural groupings of countries that can be analysed together?

SELECTION OF CENTRES IN TRIALS

- Currently this is based on recruitment potential, the need to involve key investigators or logistical reasons.
- Should an attempt be made to select 'typical' centres, or to recruit a representative sample of centre types?

COLLECTION OF COUNTRY AND CENTRE LEVEL VARIABLES

- These could be used as covariates in the multilevel model.
- Potential variables depend on the type of trial but could include:

Country level

- % GDP spent on health
- reimbursement system for hospitals.
- payment method for physicians

Centre level

- bed occupancy
- teaching status
- range of clinical specialties

Patient level

- age
- gender
- disease severity
- socio-economic status

SELECTION OF RESOURCE ITEMS FOR COSTING

- Current methods of selection are unclear, but level of detail probably reflects the level of funding for the economic study.
- With increased detail the need for imputation of unit costs increases (Schulman et al, 1998).

Table 1: Reported Procedure and Per Diem Costs for Study Countries

	Costs (US\$)						<u> </u>
	Germany	Italy	France	Sweden	UK	Australia	Spain
Procedure costs							-
Burr holes	130	77	216	372	365	711	72
Chest tubes	87	210	150	175	201	120	93
Central nervous system shunt	1148	1749	617	371	357	699	526
Craniofacial procedures	350	471	628	693	843	888	673
Cranioplasty	590	794	1059	1557	1420	1197	1134
Debridement of brain	824	357	740	1386	2247	717	552
Dialysis	153	206	275	404	368	310	294
Elevation of skull fracture	367	357	483	693	377	505	336
Evacuation of lesion	506	357	493	1386	476	722	705
Filtration for renal failure	248	334	441	655	597	759	234
Gastroscopy	106	245	63	347	256	156	204
Gastrostomy (procedure)	79	148	361	290	264	223	95
Humeral shaft fracture	287	386	106	757	1904	582	21
Intracranial drainage	273	432	340	175	365	389	259
Laparotomy (exploratory)	130	209	301	866	462	573	492
Lobectomy	544	830	977	1040	569	2251	705
Peritoneal lavage	38	117	69	102	93	23	34
Removal of bone flap	506	357	411	175	408	1650	332
Replacement of bone flap	809	604	524	1203	526	1308	616
Shunt placement	642	1749	1152	260	2087	1302	580
Spine operation	1125	1515	2019	2970	2708	2283	2164
Splenectomy	249	389	483	711	648	547	518
Swan-Ganz monitor	207	335	371	546	498	420	317
Superficial laceration	16	31	20	175	154	68	36
	151	120	301	347	256	1105	132
Tracheostomy							
Per diem costs		604	,	1004	4.50		0.7.0
Daily intensive care unit	445	601	774	1231	1159	945	876
Daily intermediate care unit	169	304	301	573	315	207	32 <i>4</i>
Daily routine care unit	134	187	350	267	173	159	236
Daily rehabilitation unit	140	324	210	336	384	186	464

Actual costs are in plain text; market-basket imputed costs are in bold/italic text.

Source: Schulman et al, 1998.

POINTS TO NOTE

- Selection of resource items should take account of the availability of financial data.
- A 'multi-layered' approach might be advisable.
- A standardised protocol for generating unit costs is advisable but only minimises (rather than solves) the problem of variability in financial systems.

CONCLUSIONS

- Progress has already been made in tackling the methodological challenges posed by multinational studies.
- The role of multilevel modelling should be explored further.
- The analysis of multinational economic clinical trials could be assisted by thinking more carefully about the design of these studies.