Bayesian Sensitivity Analysis of Economic Models

Tony O’Hagan & Jeremy Oakley

CHEBS, University of Sheffield
Synopsis

- **Background**
 - models, parameter uncertainty, sensitivity analysis
- **Elicitation**
 - specifying probability distributions for uncertain parameters, examples from MS model
- **Sensitivity analysis**
 - Bayesian methods, application to osteoporosis model
- **Conclusions**
Background
Models and parameters

- Economic models are widely used in support of arguments of cost-effectiveness
- Invariably,
 - they have a number of parameters and assumptions that must be specified to run the model
 - the true values of these model inputs are not known
- Parameter estimates are typically drawn from a variety of sources
Sensitivity analysis

- Uncertainty and inaccuracy in parameter estimates should be acknowledged.
- To run the model with the estimated values and to pretend that the outputs from the model are precise assessments of cost-effectiveness is naïve and potentially misleading.
- Sensitivity analysis explores the implications of uncertainty in model inputs.
Varieties of SA

- **One-way SA**
 - Vary one parameter at a time over range

- **Multivariate SA**
 - Vary parameters jointly
 - Factorial designs, Analysis of Variance

- **Probabilistic SA**
 - Assign probability distributions to parameters
 - Deduce distributions for outputs
Why use PSA?

- More realistic representation of parameter uncertainty
- Comprehensive analysis of output uncertainty
 - Mean or median output is a better central estimate than the output from central estimates of inputs
 - Analysis of contributions from individual inputs
 - Chances of extreme outputs
- Recommended by NICE in their advice to sponsors
Why Bayesian methods?

• Placing probability distributions on parameters is essentially Bayesian
 › Bayesian statisticians can offer considerable relevant expertise

• Propagating input uncertainty in PSA can be expensive in computer time
 › Modern Bayesian tools offer huge efficiency gains
 › They can also provide more informative analysis
Elicitation
Assessing uncertainty

• Probability distributions on input parameters should represent uncertainty accurately
 › All sources of uncertainty should be recognised
 › Possible biases should be recognised
 › Should reflect consensus opinion
 » Varieties of opinion may be covered by scenarios
 › Should synthesise available information

• This is not easy!
The MS model

• An economic model was built to assess beta-interferon and glatiramer acetate in treatment of multiple sclerosis

• Key inputs included
 › Natural history hazard rates for progression from each (E)DSS to the next
 › Treatment effects in reducing progression hazards
Natural history progression

- Sources of uncertainty/error
 - Data from Canadian natural history dataset
 - Possible bias relative to UK
 - Parameters derived: mean sojourn times
 - Annual DSS data, so large rounding errors
 - Converted to hazards assuming exponential
 - Assumption

- Uncertainties modelled in terms of systematic and random components
Treatment effects

- Effects of treatment in reducing progression from published sources
 - Sampling errors
 - Possible biases, presenting most favourable analysis
 - Clinical trial baselines and recruitment different
 - Different endpoints, do not relate directly to progression hazards
 - Relative risk assumed constant over (E)DSS

- Non-sampling uncertainty very substantial
Bayesian PSA
Monte Carlo PSA

- Monte Carlo is the standard approach
 - Many random input configurations sampled from their probability distributions
 - Model run for each configuration => sample from output distribution
- Requires thousands of model runs
- Provides overall assessment of output uncertainty
 - Thousands more runs needed for deeper analysis
Other methods

- There is a substantial literature on sensitivity analysis of complex computer models
- This has not yet filtered into health economics
- Analysis is often focussed on understanding the model and identifying influential inputs
- Recently developed Bayesian methods offer enormous reduction in the number of model runs needed
Osteoporosis model

- Uncertainty over relative risks of fractures
- Available clinical data only allow these to be estimated with a substantial margin of error
- The model is very computer-intensive
 - Patient-level simulation model
 - A single run, with specified values for the relative risks, takes 1.5 hours
 - MC methods would be completely impractical
Model runs

- 4 uncertain inputs
 - Relative risks of fractures to the hip, spine, humerus and forearm
- 41 runs of the model
 - Needed to cover RR values appropriate for several alternative drugs
 - Only about 20 runs informative for a given drug
 - Unlike MC, parameter configurations not random, but *chosen* to make maximal use of these few runs
The Cost-Effectiveness Acceptability Curve gives the probability, based on available evidence, that this drug is more cost-effective than standard, as a function of the willingness to pay K (pounds per QALY)
Partitioning the variance

- Variance of incremental net benefit is partitioned according to contributions from each uncertain parameter
- Uncertainty in the RR of hip fracture is most influential (39%), then spinal fracture (14%)
- Interactions are very important (31%)
Main effects

• The graphs show the effect of varying each parameter, when averaged over the uncertainty in other parameters.

• We can see that RR for hip fractures is most influential, but can also see the nature of its influence.
Joint effects

- This shows the joint effect of the RRs for hip and spinal fractures, averaged over other parameters
- The importance of interactions is evident
Conclusions

- Probabilistic Sensitivity Analysis is an important process in the use of economic models
- The specification of probability distributions for parameters is crucial and difficult to do well
 - Bayesian expertise in elicitation can help
- The technology of implementing PSA is complex, and MC methods will often be inappropriate
 - New Bayesian tools offer efficiency savings and access to more informative analyses